gpytorchwrapper.src.config.config_classes

Functions

create_config(config_dict)

Create a Config object from a nested configuration dictionary.

Classes

Config(data_conf, transform_conf, ...)

DataConf(num_inputs, num_outputs[, output_index])

LikelihoodConf(likelihood_class, ...)

ModelConf(model_class, model_options)

OptimizerConf(optimizer_class, optimizer_options)

TestingConf([test, test_size, ...])

TrainingConf(model, likelihood, ...)

TransformConf(transform_input, transform_output)

TransformerConf(transform_data, ...)

class gpytorchwrapper.src.config.config_classes.Config(data_conf: gpytorchwrapper.src.config.config_classes.DataConf, transform_conf: gpytorchwrapper.src.config.config_classes.TransformConf, training_conf: gpytorchwrapper.src.config.config_classes.TrainingConf, testing_conf: gpytorchwrapper.src.config.config_classes.TestingConf)[source]

Bases: object

data_conf: DataConf
testing_conf: TestingConf
training_conf: TrainingConf
transform_conf: TransformConf
class gpytorchwrapper.src.config.config_classes.DataConf(num_inputs: int, num_outputs: int, output_index: int | list[int] | NoneType = None)[source]

Bases: object

num_inputs: int
num_outputs: int
output_index: int | list[int] | None = None
class gpytorchwrapper.src.config.config_classes.LikelihoodConf(likelihood_class: str = 'GaussianLikelihood', likelihood_options: Optional[dict] = <factory>)[source]

Bases: object

likelihood_class: str = 'GaussianLikelihood'
likelihood_options: dict | None
class gpytorchwrapper.src.config.config_classes.ModelConf(model_class: str, model_options: Optional[dict] = <factory>)[source]

Bases: object

model_class: str
model_options: dict | None
class gpytorchwrapper.src.config.config_classes.OptimizerConf(optimizer_class: str = 'Adam', optimizer_options: Optional[dict] = <factory>)[source]

Bases: object

optimizer_class: str = 'Adam'
optimizer_options: dict | None
class gpytorchwrapper.src.config.config_classes.TestingConf(test: bool = False, test_size: float = 0.2, strat_shuffle_split: bool = False, kfold: bool = False, kfold_bins: int | None = None)[source]

Bases: object

kfold: bool = False
kfold_bins: int | None = None
strat_shuffle_split: bool = False
test: bool = False
test_size: float = 0.2
class gpytorchwrapper.src.config.config_classes.TrainingConf(model: gpytorchwrapper.src.config.config_classes.ModelConf = <factory>, likelihood: gpytorchwrapper.src.config.config_classes.LikelihoodConf = <factory>, learning_iterations: int = 100, botorch: Optional[bool] = False, debug: Optional[bool] = True, optimizer: gpytorchwrapper.src.config.config_classes.OptimizerConf = <factory>)[source]

Bases: object

botorch: bool | None = False
debug: bool | None = True
learning_iterations: int = 100
likelihood: LikelihoodConf
model: ModelConf
optimizer: OptimizerConf
class gpytorchwrapper.src.config.config_classes.TransformConf(transform_input: gpytorchwrapper.src.config.config_classes.TransformerConf = <factory>, transform_output: gpytorchwrapper.src.config.config_classes.TransformerConf = <factory>)[source]

Bases: object

transform_input: TransformerConf
transform_output: TransformerConf
class gpytorchwrapper.src.config.config_classes.TransformerConf(transform_data: bool = False, transformer_class: str = 'DefaultTransformer', transformer_options: Optional[dict] = <factory>, columns: Optional[list[int]] = None)[source]

Bases: object

columns: list[int] | None = None
transform_data: bool = False
transformer_class: str = 'DefaultTransformer'
transformer_options: dict | None
gpytorchwrapper.src.config.config_classes.create_config(config_dict: dict) Config[source]

Create a Config object from a nested configuration dictionary.

This function initializes a Config dataclass using values from the provided config_dict. Optional fields not specified in the dictionary are populated with default values.

Parameters:

config_dict (dict) –

A nested dictionary with the following structure:
  • data_conf :
    • num_inputsint

      Number of input features.

    • num_outputsint

      Number of output targets.

    • output_indexint or list of int, optional

      Index or indices of outputs to use.

  • transform_confdict, optional
    • transform_inputdict
      • transform_data : bool, default False

      • transformer_class : str, default “DefaultTransformer”

      • transformer_options : dict, default {}

      • columns : list of int, optional

    • transform_outputdict

      Same structure as transform_input.

  • training_confdict
    • modeldict
      • model_class : str

      • model_options : dict, default {}

    • likelihooddict, optional
      • likelihood_class : str, default “GaussianLikelihood”

      • likelihood_options : dict, default {}

    • learning_iterations : int, default 100

    • botorch : bool, default False

    • debug : bool, default True

    • optimizerdict, optional
      • optimizer_class : str, default “Adam”

      • optimizer_options : dict, default {“lr”: 0.1}

  • testing_confdict, optional
    • test : bool, default False

    • test_size : float, default 0.2

    • strat_shuffle_split : bool, default False

    • kfold : bool, default False

    • kfold_bins : int, optional

Returns:

A fully populated Config dataclass instance, with missing optional values filled in using defaults.

Return type:

Config