gpytorchwrapper.src.config.config_classes
Functions
|
Create a Config object from a nested configuration dictionary. |
Classes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
- class gpytorchwrapper.src.config.config_classes.Config(data_conf: gpytorchwrapper.src.config.config_classes.DataConf, transform_conf: gpytorchwrapper.src.config.config_classes.TransformConf, training_conf: gpytorchwrapper.src.config.config_classes.TrainingConf, testing_conf: gpytorchwrapper.src.config.config_classes.TestingConf)[source]
Bases:
object
- testing_conf: TestingConf
- training_conf: TrainingConf
- transform_conf: TransformConf
- class gpytorchwrapper.src.config.config_classes.DataConf(num_inputs: int, num_outputs: int, output_index: int | list[int] | NoneType = None)[source]
Bases:
object
- num_inputs: int
- num_outputs: int
- output_index: int | list[int] | None = None
- class gpytorchwrapper.src.config.config_classes.LikelihoodConf(likelihood_class: str = 'GaussianLikelihood', likelihood_options: Optional[dict] = <factory>)[source]
Bases:
object
- likelihood_class: str = 'GaussianLikelihood'
- likelihood_options: dict | None
- class gpytorchwrapper.src.config.config_classes.ModelConf(model_class: str, model_options: Optional[dict] = <factory>)[source]
Bases:
object
- model_class: str
- model_options: dict | None
- class gpytorchwrapper.src.config.config_classes.OptimizerConf(optimizer_class: str = 'Adam', optimizer_options: Optional[dict] = <factory>)[source]
Bases:
object
- optimizer_class: str = 'Adam'
- optimizer_options: dict | None
- class gpytorchwrapper.src.config.config_classes.TestingConf(test: bool = False, test_size: float = 0.2, strat_shuffle_split: bool = False, kfold: bool = False, kfold_bins: int | None = None)[source]
Bases:
object
- kfold: bool = False
- kfold_bins: int | None = None
- strat_shuffle_split: bool = False
- test: bool = False
- test_size: float = 0.2
- class gpytorchwrapper.src.config.config_classes.TrainingConf(model: gpytorchwrapper.src.config.config_classes.ModelConf = <factory>, likelihood: gpytorchwrapper.src.config.config_classes.LikelihoodConf = <factory>, learning_iterations: int = 100, botorch: Optional[bool] = False, debug: Optional[bool] = True, optimizer: gpytorchwrapper.src.config.config_classes.OptimizerConf = <factory>)[source]
Bases:
object
- botorch: bool | None = False
- debug: bool | None = True
- learning_iterations: int = 100
- likelihood: LikelihoodConf
- optimizer: OptimizerConf
- class gpytorchwrapper.src.config.config_classes.TransformConf(transform_input: gpytorchwrapper.src.config.config_classes.TransformerConf = <factory>, transform_output: gpytorchwrapper.src.config.config_classes.TransformerConf = <factory>)[source]
Bases:
object
- transform_input: TransformerConf
- transform_output: TransformerConf
- class gpytorchwrapper.src.config.config_classes.TransformerConf(transform_data: bool = False, transformer_class: str = 'DefaultTransformer', transformer_options: Optional[dict] = <factory>, columns: Optional[list[int]] = None)[source]
Bases:
object
- columns: list[int] | None = None
- transform_data: bool = False
- transformer_class: str = 'DefaultTransformer'
- transformer_options: dict | None
- gpytorchwrapper.src.config.config_classes.create_config(config_dict: dict) Config [source]
Create a Config object from a nested configuration dictionary.
This function initializes a Config dataclass using values from the provided config_dict. Optional fields not specified in the dictionary are populated with default values.
- Parameters:
config_dict (dict) –
- A nested dictionary with the following structure:
- data_conf :
- num_inputsint
Number of input features.
- num_outputsint
Number of output targets.
- output_indexint or list of int, optional
Index or indices of outputs to use.
- transform_confdict, optional
- transform_inputdict
transform_data : bool, default False
transformer_class : str, default “DefaultTransformer”
transformer_options : dict, default {}
columns : list of int, optional
- transform_outputdict
Same structure as transform_input.
- training_confdict
- modeldict
model_class : str
model_options : dict, default {}
- likelihooddict, optional
likelihood_class : str, default “GaussianLikelihood”
likelihood_options : dict, default {}
learning_iterations : int, default 100
botorch : bool, default False
debug : bool, default True
- optimizerdict, optional
optimizer_class : str, default “Adam”
optimizer_options : dict, default {“lr”: 0.1}
- testing_confdict, optional
test : bool, default False
test_size : float, default 0.2
strat_shuffle_split : bool, default False
kfold : bool, default False
kfold_bins : int, optional
- Returns:
A fully populated Config dataclass instance, with missing optional values filled in using defaults.
- Return type: