gpytorchwrapper.src.kernels.linearxmatern_kernel_perminv
Classes
|
- class gpytorchwrapper.src.kernels.linearxmatern_kernel_perminv.LinearxMaternKernelPermInv(n_atoms: int, idx_equiv_atoms: list[list[int]], select_dims: list[int] = None, nu: float = 2.5, ard: bool = False, representation: str = 'invdist', variance_prior: Prior | None = None, variance_constraint: Interval | None = None, **kwargs)[source]
Bases:
PermInvKernel
- forward(x1, x2, diag=False, last_dim_is_batch: bool | None = False, **params)[source]
Computes the covariance between \(\mathbf x_1\) and \(\mathbf x_2\). This method should be implemented by all Kernel subclasses.
- Parameters:
x1 – First set of data (… x N x D).
x2 – Second set of data (… x M x D).
diag – Should the Kernel compute the whole kernel, or just the diag? If True, it must be the case that x1 == x2. (Default: False.)
last_dim_is_batch – If True, treat the last dimension of x1 and x2 as another batch dimension. (Useful for additive structure over the dimensions). (Default: False.)
- Returns:
The kernel matrix or vector. The shape depends on the kernel’s evaluation mode:
full_covar: … x N x M
full_covar with last_dim_is_batch=True: … x K x N x M
diag: … x N
diag with last_dim_is_batch=True: … x K x N
- has_lengthscale = True
- property variance: Tensor