gpytorchwrapper.src.models.model_evaluate
Functions
|
Evaluate the model on the training and test sets |
Classes
|
Class for evaluating the rmse and correlation of the model predictions on the selected dataset. |
- class gpytorchwrapper.src.models.model_evaluate.ModelEvaluator(model: ExactGP, likelihood: GaussianLikelihood | MultitaskGaussianLikelihood, output_transformer: object = None)[source]
Bases:
object
Class for evaluating the rmse and correlation of the model predictions on the selected dataset.
- gpytorchwrapper.src.models.model_evaluate.evaluate_model(model: ExactGP, likelihood: Likelihood, output_transformer: object, train_x: Tensor, train_y: Tensor, test_x: Tensor, test_y: Tensor) tuple[list[float], list[float], list[float]] | tuple[list[float], None, None] [source]
Evaluate the model on the training and test sets
- Parameters:
model (ExactGP) – The trained model
likelihood (Likelihood) – The trained likelihood of the model
output_transformer (object) – The output transformer
train_x (Tensor) – The input training data
train_y (Tensor) – The output training data
test_x (Tensor) – The input test data
test_y (Tensor) – The output test data
- Returns:
train_rmse (list) – List containing the RMSE values for the training set
test_rmse (list or None) – List containing the RMSE values for the test set
test_corr (list or None) – List containing the correlation values for the test set