gpytorchwrapper.src.data.data_transform
Functions
|
Applies transformations to training and test datasets based on configuration. |
|
Transform the input data using the selected transformer |
- gpytorchwrapper.src.data.data_transform.transform(train_x: DataFrame, train_y: DataFrame, test_x: DataFrame | None, test_y: DataFrame | None, transform_conf: TransformConf) tuple[DataFrame, DataFrame, DataFrame, DataFrame, object | None, object | None] | tuple[DataFrame, DataFrame, None, None, object, object] [source]
Applies transformations to training and test datasets based on configuration.
- Parameters:
train_x (pandas.DataFrame) – Input features for the training dataset.
train_y (pandas.DataFrame) – Output targets for the training dataset.
test_x (pandas.DataFrame or None) – Input features for the test dataset, or None if not provided.
test_y (pandas.DataFrame or None) – Output targets for the test dataset, or None if not provided.
transform_conf (TransformConf) – Configuration object containing settings for input and output transformations.
- Returns:
A tuple containing: - Transformed training input features (pandas.DataFrame) - Transformed test input features (pandas.DataFrame or None) - Transformed training targets (pandas.DataFrame) - Transformed test targets (pandas.DataFrame or None) - Input transformer object used or None - Output transformer object used or None
- Return type:
tuple
- gpytorchwrapper.src.data.data_transform.transform_data(x: DataFrame, transformer: object, columns: list[int] | None = None) DataFrame | tuple[DataFrame, object] [source]
Transform the input data using the selected transformer
- Parameters:
x (pd.DataFrame) – The input data
transformer (object) – The selected transformer
columns (list, optional) – The columns on which the transformer has to operate
- Returns:
x (pd.DataFrame) – The transformed input data
transformer (object) – The fitted transformer